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Abstract

Running in-class programming activities is difficult with existing software. In this paper,
we present Necode, a web-based, open-source environment for creating and delivering
these kinds of activities. Necode’s APIs enable developers to create new activities

and programming challenges, and to integrate additional programming languages into the
environment. We present some sample activities to showcase Necode, including one in which
students solve a programming problem, run their code through instructor-defined automated
tests, and submit it to the instructor so that different solutions can be compared and discussed
as a whole class. To assess Necode, we asked students to recreate displayed shapes and patterns
using GLSL and surveyed students about their experiences; feedback on the tool was generally
very positive.
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Executive Summary

Writing code is an important part of learning computer science, and so it is valuable to have
software that assists students write code in educational contexts. We investigated several
software solutions for providing an environment for students to program in, but an area we
found was lacking was software to facilitate in-class programming activities, a problem we
created Necode to solve.

The software we investigated mostly focused on supporting tasks which students might do
on their own or in groups for an assignment, but mostly not activities intended for completion
during class time. However, there were still some valuable insights that these software provided.
First, the tools we looked at with educational use cases in mind, such as CodeCircle[1] and
Replit[2], are browser-based. Jupyter notebooks too, though not specifically intended for
educational use, have a web client [3]. This is very convenient for both students and instructors
since it means that no external software needs to be installed, reducing both the cost of dealing
with unusual software configurations and the time it takes to set up. We took this approach for
Necode as well. Additionally, they all had visual output of some kind, though it took different
forms. Being able to visualize code, or the output of code, can aid understanding, and in some
cases can introduce a level of creativity to coding which improves student engagement. Necode
uses visual output in a way that most closely resembles Replit’s output pane, though that could
be changed depending on the type of activity.

With Necode, we made a general framework for instructors to create in-class activities, and for
developers to create new kinds of in-class activities. We wanted to isolate programming languages
from activities so that activities could automatically work with programming languages we
added support for in the future, especially as the possible combinations of programming
languages and activities grew multiplicatively. For this, we designed a concept of “features” in
which activities declare which features they require and languages declare which features they
support, and every activity will therefore have a guarantee that the languages it will be used
with will support everything it needs to be able to do.

Our primary “DOM Programming” activity provides a code pane as well as, depending
on its configuration, an HTML and CSS pane, which allows a student to create small web
pages that will appear in the output pane. While the conventional language to use in the
code pane would be JavaScript, due to the feature API, it can be used with any supported
language (currently JavaScript, TypeScript, and Python 3). This works by compiling the various
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languages to JavaScript before execution, using Babel for TypeScript and Brython for Python
3 [4].

For use in class, the intended way to use Necode, we have a submission system by which
students can submit their code to the instructor and the instructor can load up student
submissions and show them to the class, likely with discussion. If the instructor chooses, they
can also include automated tests that run when a student tries to submit their work; these
tests are implemented using a DSL inside TypeScript.

Necode also supports interaction between users in an activity via WebRTC, using an API
we call “RTC policies.” In order to showcase this, we created a “Canvas Ring” activity in which
students can write code to draw on an HTML canvas, and then their canvas is sent to the next
student who can draw the previous student’s canvas onto their canvas, and so on, in a “ring” or
circle formation. This activity fosters creative coding and collaboration, while also teaching
about the HTML Canvas API.

In order to assess Necode in practice, we created a new activity that enables students to
write GLSL shaders and see them rendered to the output pane. Despite some technical issues
when configuring the activities, Necode worked very smoothly when we tested it on an actual
class of students, and the feedback was very positive, with students especially liking the fast
feedback from having the output pane integrated into the editor and the full-class discussion of
student submissions.

In the future we plan to fix some bugs and interface issues with Necode as it currently
exists, and then explore supporting languages like Racket and Java, which are often used in
education but do not have easy ways to compile and run them in JavaScript. We also want to
explore more possibilities with RTC policies, and use them to implement collaborative editors.

Necode’s source is available at https://github.com/TheUnlocked/Necode, and an instance
of Necode set up for WPI is available at https://code.cs.wpi.edu/.
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Introduction

Over the past few decades, computer science education has evolved. No longer are the days
of punch cards and shared terminals—students can now write and execute code on demand
using portable laptops that they carry around with them throughout the day. Despite these
advances however, lectures have largely remained one-sided: the instructor explains the topic of
the class, and they may even write and execute code in class. Yet student participation in the
in-class code-writing process often remains restricted to more indirect forms of engagement like
asking for student suggestions for what code to write, as if computing was still some scarce
resource. While some amount of indirect participation may be useful, its dominance in contrast
to direct participation is strange. In-class individual and group exercises are a staple of math
and engineering courses; if we have the computing power for it, why are they not just as present
in computer science too?

Necode attempts to help close this gap. Just as a calculus teacher might ask students to
find the area under a surface, a computer science teacher might use Necode to ask students to
find the unique elements in a list. At the start of the activity, they could introduce the problem
to students and then have students open up their laptops and start trying to solve it. When a
student thinks they have a solution, they could run it through automated tests written by the
teacher to see if their code is correct (an advantage that computer science has over calculus),
and when they get it, the student can submit their solution to the teacher. When the teacher
feels enough time has passed, they can show student solutions to the class so that the whole
class can discuss various students’ approaches to the problem, just as a calculus teacher might
call up student volunteers to explain their work. The benefits of this have been proven in math
classes, we believe it is equally appropriate for computer science [5].

Computer science is broad, and the set of activities that a computer science teacher might
want to do with their students is similarly broad. One teacher might want to have their students

3



CHAPTER 1. INTRODUCTION

build a small game, while another might want their students to navigate a binary-search tree,
while yet another might want their students to implement specular highlights for a basic 3D
renderer. While Necode cannot possibly cover the entire set of possible activities, we aim to
cover a large swath of them by making Necode a framework for in-class computer science
activities in general, rather than forcing all interactive coding exercises into a particular rigid
format. While we spend most of our time in this paper on one type of activity that facilitates
the kind of individual exercises we mentioned earlier, we will also present an alternative type
of activity that focuses more on creative and collaborative elements of programming in order
to better demonstrate Necode’s full capabilities. These particular out-of-the-box activities are
helpful for demonstrating Necode’s features, but fundamentally Necode is the infrastructure
that ties the activities together, not the activities themselves. Thus, our contribution is not just
the end-user experiences that we will show screenshots of, but also the set of APIs which allow
developers to use Necode to create new kinds of activities for instructors to use in their classes.

4



C
h

a
p

t
e

r 2
Background

The concept of using interactivity and live coding to teach programming is not itself novel, and
many different approaches have been taken to execute it. In this section, we will discuss a few of
these approaches, and what each of them brings to the table before we dive into Necode itself.

2.1 Industry Collaboration Tools

Collaboration is commonplace in professional software development, and much software has
been created to make it easier in an industry setting. If that software was effective in classrooms,
it would greatly simplify the problem of classroom collaboration—using off-the-shelf software is
much simpler than making new software, and if it is used in industry, it would also likely be
more stable and come with better support.

As such, many instructors have tried using professional collaboration tools. In 2020, Ying
and Boyer investigated the effectiveness of many of these tools in actual classrooms, such as
Git and other version control for asynchronous collaboration, Visual Studio Live Share and
other real-time collaborative editors, screen sharing and remote access tools, and more. They
found that in general, these industry tools were often too complex for classroom use and that
there was a need for more user-friendly interfaces for novice programmers. Rather than use
highly-featured but more involved tools like Git and Live Share, they found that some students
were using considerably underpowered tools like Google Docs and email, neither of which are
ideal for collaborating on a programming assignment [6].

While it may be valuable to teach about industry collaboration tools in school, particularly
when teaching about software engineering, they are not necessarily ideal in cases where there is
a significant risk that they could distract from the intended material.

5



CHAPTER 2. BACKGROUND

2.2 CodeCircle

Researchers have also explored creating new specialized software for classroom use. One example
is CodeCircle,1 created by Fiala, Yee-King, and Grierson at Goldsmiths, University of London,
whose primary purpose is supporting social “creative” coding in a web browser, such that it
can be used as a teaching tool in classrooms. In their paper describing CodeCircle, the authors
point out six core features that they claim are desirable for interactive coding software [7].

2.2.1 Live Mode

“Live mode” is described in contrast to a form of interactive coding tool where some additional
gesture is required to push the code into the live environment beyond just writing code (e.g.
pressing a “refresh” button). With live mode, changes are automatically rendered as they are
written, without any additional user input being required. The authors of CodeCircle claim
that live mode increases interactivity by having lower feedback delay compared to systems that
require a separate gesture.

2.2.2 Collaboration

Specifically live collaboration, or the ability to have a shared editor that multiple users can edit
at the same time. This is a core feature of many collaborative programming systems (including
some of the industry tools mentioned earlier) since it allows for multiple people to collaborate
on a single piece of code at the same time.

2.2.3 Sharing & Forking

Sharing allows documents to be made public and shared with other users (in either an editable
or read-only state) via a URL, while forking allows a user to duplicate a shared project and work
on their own version separately from the original document. Subsequent research on CodeCircle
by Yee-King, Grierson, and d’Inverno found that a “Fork and Customize” approach to teaching
in which students would fork a program and then change it for their own personal tastes (as
opposed to more traditional “fill-in-the-gaps” and “implement a specification” programming
activities), was correlated with higher student creativity, as well as indirectly correlated with
higher final grades (though the authors say more research is required on that topic) [8].

2.2.4 Code Validation

In order to improve developer experience and avoid simple run-time errors, the authors decided
to validate code statically using JSHint, a JavaScript linter, and only push the user’s code when

1In this section we are specifically focusing on the original version of CodeCircle published in 2016. Since
then, CodeCircle has undergone several changes and been rebuilt as CodeCircle V2, but the core emphases
remain the same [1].

6
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it validates.

The authors also mention that code validation would provide security and privacy benefits,
which could be true, for example if the validation restricted code to using only a known-safe
subset of JavaScript,2 but the authors do not mention any such restriction in CodeCircle.

2.2.5 Assets

Since CodeCircle was designed for creative coding of audiovisual environments, the ability for
users to import assets (such as images, audio, etc.) into their program is useful, though it is
unclear how necessary this feature is in other educational contexts. CodeCircle also provides a
preview window for viewing these assets once uploaded.

2.3 Jupyter Notebooks

Jupyter notebooks, while most often used for data science applications, are also sometimes used
as an educational tool. Rather than the more directly collaborative tools seen earlier, Jupyter
notebooks allow a student to walk through a lesson with text, visual, and code components,
almost like a set of interactive lecture notes. Because of this, they are potentially well suited
for use in flipped classrooms [10].

There are several barriers to use of Jupyter notebooks in classrooms, however. Initial setup
on its own can be cumbersome, either to the student if they must locally install and run the
notebook server and client, or the instructor if they need to set up a Jupyter notebook server for
the class. Additionally, Jupyter notebooks maintain a hidden state that is preserved when any
code section is run, which creates an unintuitive disconnect between the layout of the code in
the notebook and the actual state of the environment [3]. This has the potential to be extremely
confusing to students, especially if their code works when they try it, but is reliant on transient
state that would not exist on a restart (either due to the relevant code being deleted, modified,
or being out of order from the order the code sections need to be run in for correct behavior).

Johnson from the University of New Hampshire also points out some pedagogical issues
frequently associated with Jupyter notebooks, such as teaching poor software development
practices. Automated testing of code cells is often not a focus, and neither are style conventions.
In order to maximize the benefit of Jupyter notebooks, instructors need to be aware of the
capabilities of Jupyter notebooks in order to properly utilize them for their instruction, which
is an additional learning curve [3].

2For example, using Google Caja, a now-defunct JavaScript transpiler that sanitizes JavaScript at the cost
of decreased capabilities and sometimes falsely rejecting safe code [9].
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2.4 Integrated Commercial Products for Coding in Classrooms

Some companies have created products specifically to facilitate programming education, both
in and out of class. Two examples of these products are Replit’s Teams for Education[2] and
CodingRooms [11]. While not identical, these products are similar, so we will focus our attention
on Replit’s Teams for Education in this section.

The main benefit that integrated classroom solutions like Teams for Education bring is the
asymmetry between the instructor and the students. Unlike tools we have looked at before
(other than some applications of Jupyter notebooks), in Teams for Education the students
and instructor are not using the same end-user perspective but in different ways. Instead, the
instructor has special control over their students and can interact with them directly, such as
by observing their code as they write it and commenting on, or even editing, their code live
in front of them. Additionally, instructors can assign students to groups and place them into
collaborative editors directly, taking control out of the hands of students, but also streamlining
the process [2].

In addition to greater instructor control over students, there are also a number of other
useful features for educational contexts that products like Teams for Education provide.

2.4.1 Multi-lingual

The core Replit infrastructure that powers Teams for Education runs code on a virtual machine
on a server rather than in the user’s browser, which allows it to run code in practically any
language, not just JavaScript [12].3 This is significant, as only a tiny fraction of computer
science classes use JavaScript—less than 1% of introductory classes in the US [16]. Supporting
a wider variety of programming languages is necessary if an educational programming product
is intended to be integrated into existing courses.

2.4.2 Automated Tests & Auto-Grading

Teams for Education also supports creating automated tests that students can run to verify
that their solution to a particular problem is correct before submitting it (and which can also
be used for automatically grading student submissions). These tests can either take the form
of “Input/Output testing” in which some string is fed to “standard in” and then the resulting
“standard out” is tested against an expected output, or traditional unit testing for the few
languages which support it [2].

3Some languages like Java and other JVM languages, C# and other .NET languages, Racket, and so on can
be compiled to WebAssembly, which can be run in a browser, but the compilation step itself can not usually
be performed in a browser, at least not without significant effort and potentially untenable performance cost
[13–15]. Some languages like Python 3 have compilers/interpreters written in JavaScript[4] which eases those
concerns but are still more complicated to use than executing JavaScript directly.

8
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2.4.3 Graphics Pane

Replit (and by extension Teams for Education) supports a graphics pane whose content is
streamed from the virtual machine to a user’s browser over a WebSocket,[17] or is rendered
directly in the user’s browser with an iframe if the user is doing an HTML/CSS/JS project.
Like previously seen with CodeCircle, this enables a more visually interactive experience than
simply implementing algorithms and running them against test cases.

2.4.4 Proprietary

A potential downside of these products is that they are closed-source, paid, proprietary software.
In terms of cost, Replit’s Teams for Education is $1000/year for an institution or $35/month
if a teacher wants to purchase a license for themselves.4 While that might be a considerable
price to pay for an individual teacher, the expense for an entire institution is likely negligible
in most cases. The bigger concern is that these are proprietary services, which means it is
not possible for others to contribute to them or fork them with new features, and their use
is entirely dependent on the faith that the company behind the software will stay alive and
continue to provide the service.

4CodingRooms does not publicly advertise its price.
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Methodology

In this chapter, we will first look at the design philosophy guiding Necode during its development,
after which we will dive deep into the primary type of activity in Necode, the DOM Programming
Activity, which we will use to show off many of Necode’s primary features. Afterward, we will
look at a different kind of activity in order to demonstrate Necode’s Real-Time Communication
(RTC) capabilities, and finish off with an overview of our Classroom management tools for
instructors.

3.1 Design Philosophy

Necode is intended to, at its core, be an extensible piece of educational programming infras-
tructure. However, the word “extensible” is vague, and over-eagerness on that front can lead
to software that is hard to use, hard to write, and does not even achieve a useful level of
extensibility in practice. While Necode is not a Unix application, the Unix philosophy (at least
in part) still applies: “Make each program do one thing well” [18].

Therefore, Necode’s extensibility only aims to reach to the extents of one narrow slice
of educational programming software: active learning through social in-class programming
activities. To achieve this goal, Necode’s design takes an opinionated stance as to the existence
of classrooms, as well as to the hierarchical nature of the student-teacher relationship. An
in-class activity cannot occur without a classroom, and student participation cannot occur
without students. The precise nature of the activity and student participation may vary, but
those facts hold true no matter the case.

Note that since Necode does not try to do everything, it is necessarily less featured in
certain areas than the software previously discussed in Chapter 2. Since all student work is
performed in the context of in-class activities, student creations are not shareable like they
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are in CodeCircle, nor can they be viewed independent of the activity they were created in.
Similarly, because the activities are intended for in-class use, Necode does not support the
assignment and auto-grading system of Replit’s Teams for Education.1 Finally, because Necode
is focused on student participation, it is not suitable for asynchronous, independent work like
Jupyter notebooks are. Instead, Necode tries to tackle its own niche, such that it can pair with
other software (like those just mentioned) in an orthogonal manner.

3.2 The DOM Programming Activity

In order to demonstrate the features of Necode in action, we will take a look at one of the
primary activities that we have implemented, the DOM Programming activity. This is not
the only activity that exists, and we will discuss the general ActivityDescription API in more
detail in Section 3.3, but this is the best place to start from to give an idea of what is currently
available in Necode out of the box.

3.2.1 In Action

Figure 3.1: A sample DOM Programming activity from a student’s perspective

When a student joins a classroom (Section 3.4) and a DOM Programming activity starts,
they will see instructions, a set of HTML, JavaScript, and CSS input panes (these can be
configured—see Section 3.2.3), and a visual output pane, as shown in Figure 3.1. All of these

1Though it does support a variant of this tailored for in-class activities.
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panes are resizable using drag handles on the edges, and will change their layout responsively
depending on the user’s screen size.2

By default the input panes will contain some text configured by the instructor, but their
contents can be changed, and the student can see the output pane update live by clicking
“Apply Changes,” or by pressing the Ctrl/Cmd+S (or “save”) keyboard shortcut. Note that
this is a contrast to CodeCircle in which changes are propagated instantly as soon as they are
written (Section 2.2.1). One of the big reasons for this is that updating code as it’s written can
cause loss of transient state even when a student did not intend to commit their changes yet,
which may be frustrating.

3.2.1.1 CSS Hot Reload

Programs can often have complex state that takes time to set up, and so when someone writes
code, we would ideally want the ability for that code to be replaced live without resetting the
entire program state. This is called “hot reload” (or “hot replacement,” “hot swap,” etc.), and
can be a very desirable feature.

Unfortunately, hot reloading the JavaScript content is not possible (see Appendix A: Hot
Reload), and hot reloading the HTML content is not possible for the same reasons. However,
styling is usually segregated from behavior, so swapping in and out style sheets is something
we are able to do. This can be very useful, as it allows students to experiment with different
ways of styling their program while their program has meaningful state active, and we believe
it will significantly improve the development experience with respect to writing styles. If, for
whatever reason, changing the styling does break the program behavior (e.g. if the program
reads information about an element’s rendered size, and a student changes layout-related styles
in the CSS pane), the student can still reload the entire environment with the refresh button in
the top right.

3.2.1.2 Submissions

Once a student has created something they are satisfied with, they can press the “Submit”
button to send their work to the instructor. When they do so, a pink indicator will appear
on the instructor’s screen to show them that a student has submitted (Figure 3.2). Then, by
clicking the “View Submissions” button, the instructor can see everything that students have
submitted. Note that in Figure 3.3, Frodo’s submission is version 2. Students can submit as
many times as they want, and all submissions are kept.3

2Due to the code editor we use, Monaco, not supporting touch devices (such as phones and tablets), Necode
does not currently have support for them either. However, a responsive design helps for smaller desktop displays,
and it means we will be ready if we add a backup code editor for touch devices or Monaco adds support.

3There is currently no interface for an instructor to access submissions other than the latest one for each
student, though the API to do so does exist.
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Figure 3.2: The instructor’s view after two students have made submissions

Figure 3.3: The dialog shown after pressing the “View Submissions” button

When an instructor selects a user in the submissions dialog, it loads their submission into
the instructor’s editor, though it does not apply those changes. The instructor can press the
“Apply all changes” button in the top right (the one with the “sync” symbol), or apply the
changes in each pane individually. This is partially a security consideration—we do not want to
run untrusted code on an instructor’s computer before they have the opportunity to look at
it—though there could also be pedagogical benefits in some cases, for example if the instructor
wants to examine a student’s code as a class to see if students can figure out what it will do
before actually running it.

3.2.2 Security

In order to improve interactivity and decrease load on servers, all code in Necode is run locally
on the user’s computer. However, whenever running code on your computer, especially when
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that code is something that someone else may have written, ensuring that the code cannot do
harm should be a top priority. While defending against malicious code (such as code trying to
extract sensitive information from the victim) is important, we are also interested in mitigating
the risk of unintentionally harmful code.

3.2.2.1 Sandboxing

Sandboxing is our main mitigation strategy for harmful code. By running all user code inside
of an iframe with the sandbox attribute set to only have allow-scripts enabled, the browser
blocks all attempts from the iframe to interact with the containing window, meaning attackers
should not be able to access sensitive information from the user’s Necode account by getting
them to run code in the Necode editor panes.4

Not being able to directly interact with the iframe does present some technical challenges.
For example, while the authors of CodeCircle describe placing user content directly into an
iframe with iframe.contentDocument.write, this will not work in a sandboxed iframe since we
are unable to directly access the iframe’s content document [7]. We can however pass messages
with window.postMessage. In order to send user data to the iframe, we load a script containing
some scaffolding code in the iframe with the srcdoc attribute, and then after receiving an
initialization message from the iframe, we send all of the user data in a message to the iframe,
which loads it into the iframe’s document. The reason we do not just load the user’s code with
srcdoc directly is so that we can have finer control for CSS hot reload (Section 3.2.1.1), and
for loading in tests later on (Section 3.2.4).

3.2.2.2 Denial of Service

While it is impossible to defend a user against themselves if they really want to hinder their
own experience, Necode can put in place some safety rails to prevent common kinds of self-
inflicted experience degradation. The main kind we target in Necode is denial of service, when
a user may inadvertently slow down or freeze Necode by running some kind of long-running or
forever-running computation. Unfortunately, because sandboxed iframes still run code in the
same thread as the surrounding window, they could freeze the user’s entire tab with something
as simple as while (true) {}.

To mitigate this issue, we use a babel transformer that adds iteration count checks to loops

4In reality, side-channel timing attacks such as the infamous Spectre vulnerability could still be used. While
V8, the most popular JavaScript engine and the one used by Chromium, has some mitigations to this kind of
attack, none of them are perfect, and the only truly reliable way to block such an attack is with process-level
site isolation [19]. Unfortunately, while cross-origin iframes do run in a separate process, just being sandboxed
is not enough for an iframe to be considered cross-origin, even if it does not have allow-same-origin in the
sandbox attribute. There is a feature issue on the Chromium bug tracker to apply site isolation to sandboxed
iframes, though this feature has not yet made it out of development at the time of writing [20].
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and cuts them off after 10001 iterations.5 While this is not a perfect solution to all types of
infinite or near-infinite loops, it will hopefully eliminate the most common issues. An alternative
possibility for more comprehensive self-DOS protection could be to inject a timer check before
every statement (or even every expression) that resets based on the event loop, but the overhead
for this could be quite large, and it still would not protect against single expressions that take
a long period of time to execute, such as in regex denial of service attacks [22]. Ultimately,
we believe that capping the iteration count of loops is a reasonably effective measure with
comparably manageable overhead.

There is a risk that capping iteration count could be undesirable, and so an option to disable
this behavior or increase the maximum iteration count could be useful. Currently that kind of
configuration is not possible in Necode, though adding it could be a possibility for future work.

3.2.3 Configuration

Figure 3.4: The configuration view of a sample DOM Programming activity

The configuration view (Figure 3.4) is similar in layout to the live activity view, which
we believe creates an intuitive link between changes in the configuration and changes in the
live activity. For example, the instructions pane (labeled 1 in the figure) is replaced with a
markdown editor that allows an instructor to write the instructions. This editor supports most of
Github-Flavored Markdown,6 allowing instructors to embed images, tables, syntax-highlighted
code blocks, and more to fit whatever their requirements are. Any changes here will be reflected
in the rendered output in the student view.

5The code for this is adapted from a similar transformer made by CodeSandbox, which is in turn adapted
from code in React, which was originally adapted from code in a 2017 blog post by Amjad Masad at Replit [21].

6Though HTML support is highly limited, even more than it is in GFM.
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The three HTML, JavaScript, and CSS panes represent the starter code that will appear
to a student when they load the activity. These can be edited to provide any amount (or no)
starter code to students, as the instructor sees fit. If the instructor does not want to use a
particular pane at all in their activity, they can also disable the pane by toggling the checkbox
on the top right of the pane (labeled 2).7

Sometimes, an instructor may want to add their own HTML to whatever the student writes,
either to provide scaffolding for the student’s code or simply to move some clutter out of the
student’s view in order to simplify the activity. In order to facilitate this, we provide a “hidden
HTML” tab (Figure 3.5), which can be accessed by clicking on the “Hidden” tab in the HTML
pane (labeled 3 on Figure 3.4). If the instructor wants to embed the user’s HTML somewhere
inside the hidden HTML, they can do so with the <user-content> element.

An example of what the activity in Figure 3.5 would look like can be seen by pressing the
“Preview” button (labeled 4 on Figure 3.4). This will load up a version of the live activity based
on the current configuration. In Figure 3.6 we can see the effect of the hidden HTML on some
user-inputted HTML. We can also see that only the HTML pane is visible since the checkboxes
of the JavaScript and CSS panes were both disabled (the instructions pane is still available,
but has been collapsed with the drag handles on the sides of each pane).

Figure 3.5: Configuring an activity that uses hidden HTML
Notice the “hidden” tab is selected in the top right corner of the HTML pane.

There are two other parts of configuration, the tests pane (labeled 5) and language configu-
ration (labeled 6), that will be discussed in Section 3.2.4 and Section 3.2.5 respectively.

7Technically all three panes can be simultaneously disabled if the instructor does not want the student to
write any code, but it would not make for a particularly interactive activity.
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Figure 3.6: Previewing an activity that uses hidden HTML
“Your HTML” and the red box around the student’s HTML content are caused by the hidden

HTML.

3.2.4 Tests

The DOM Programming activity allows the instructor to run automated tests before a student
submits their code by writing a series of assertions in the tests configuration pane. Tests are
written using a custom TypeScript DSL described in Appendix B: Testing DSL. The purpose
of these tests is not for grading (since all code is run on the client, a student could inspect the
code in the tests and over-fit their own code to the specific test cases), but instead to provide
checks and guidance to students as they are writing their code. If the instructor wants students
to be able to submit code even without passing all of their tests, they can also uncheck the
“Require Checks to Submit” button in the top right of the test configuration pane (Figure 3.7);
this enables instructors to view partially completed work and help debug student work.

Tests run in the global context and so they can be used for testing many things. They can
be used to test specified behavior in the DOM, like if an assignment says that a button should
increment some counter every time it is clicked, but more likely tests will be used for verifying
some kind of algorithm implementation. That alone is not particularly novel, but when paired
with the output pane, a student can visually experiment with their code and sample inputs
before running tests on them. For example, Figure 3.8 shows a linked list activity in which the
output pane is being used to help students visualize the data structure as they implement an
algorithm.

17



CHAPTER 3. METHODOLOGY

Figure 3.7: A comparison of the test failure dialog depending on whether checks are required
to submit

Figure 3.8: An example activity in which students are asked to implement a linked list algorithm
and shown a visualization in the output pane
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3.2.5 Languages and Features

This is the point at which we will begin to shift away from this specific activity and start to talk
about how Necode really works behind the scenes. Throughout this section, we have referred to
the DOM Programming activity as having HTML, JavaScript, and CSS panes. In truth, it does
not. Instead, the JavaScript pane is really a generic code pane. While JavaScript is the default
language, any language can be used via the LanguageDescription API (Figure 3.9), assuming
these two requirements are satisfied:

1. The language can be either compiled to or interpreted in JavaScript.
2. The language’s implementation in JavaScript has the necessary features (Figure 3.10), in

this case, supports:global and supports:isolated.

interface LanguageDescription {
name: string;
monacoName: string;
displayName: string;
features: FeatureDescription[];

}

Figure 3.9: A simplified version of the LanguageDescription interface

interface FeatureDescription {
name: string;

}

Figure 3.10: A simplified version of the FeatureDescription interface

supports:global means that declarations (such as functions and variables) in the language
can exist in the global environment, and supports:isolated means that the language can be
run in a sandboxed iframe or Web Worker, and does not require access to browser APIs. Note
the word “can”; it is entirely possible for a language to support both being run in the global
environment and in a non-global environment. “Supports” features indicate that the language
is able to opt into the desired behavior upon request, not necessarily that it always has that
behavior.

Currently in Necode, three languages have both supports:global and supports:isolated:
JavaScript, TypeScript, and Python 3 (via the Brython library). We can see this when we go to
configure languages for a DOM Programming activity (Figure 3.11). In theory, students would
be able to opt into using any of the enabled languages, but currently Necode uses the first
enabled language in the list. Therefore, it is best for an instructor to disable all of the languages
they do not plan to use in an activity, leaving only the language that they want to support.
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Figure 3.11: The dialog for configuring the programming language for an activity

Requiring the supports:global and supports:isolated features are not “hard-coded”
into Necode, but are rather configured as part of the ActivityDescription API that governs
all activities (Figure 3.12). The DOM Programming activity tells Necode that it requires
supports:global and supports:isolated, and then Necode searches for all languages which
include both of those features. In this way, languages and activities can be implemented
independently of each other and will be automatically linked up whenever possible.

interface ActivityDescription {
id: string;
displayName: string;
requiredFeatures: FeatureDescription[];

}

Figure 3.12: A trimmed version of the ActivityDescription interface demonstrating the
requiredFeatures field

3.2.5.1 Compilation

There are a number of languages that can be compiled to either JavaScript or WebAssembly
(which can be run in JavaScript), but whose compilers are not written in JavaScript or
WebAssembly. This presents a dilemma where the language could theoretically be used in
Necode if compiled, but cannot be in practice because there is no mechanism to compile it in
the browser.

There are a couple of possible solutions to this. One is the solution used by Asano and
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Kagawa in their 2019 paper that involved running user-written Java programs in the browser[13].
In their paper, they send the user’s code to the server for compilation, then they convert it to
JavaScript with the assistance of TeaVM, and then they send the compiled JavaScript back
to the user’s browser for execution. This is a model that could work for any language that
supports compilation to JavaScript or WASM, though it places a dependency on the server for
code execution, which could harm feedback time and strain the server’s resources.

An alternative possibility could be to compile the compiler itself to JavaScript or WASM
one time, possibly using itself if the compiler is hosted in the target language, or using a
tool like Emscripten if not [23]. However, compilers can be quite large, and sending the entire
compiler to the browser could cause significantly more strain than just compiling server-side
and sending the output to the browser. More research on this topic would be required to make
a determination about the impacts of both options.

3.2.6 Variations

Once again, things are not quite as they appear. The DOM Programming activity is really just
the default mode of the broader HtmlTestActivity infrastructure. While DOM Programming
provides a wide set of features and configuration options, instructors may sometimes want a
more tightly tailored experience for what they are trying to teach. Rather than completely
re-implement a new activity from scratch, it can often be easier to just create a new configuration
of HTMLTestActivity.8

interface HtmlTestActivityOptions {
hasTests?: boolean;
hasHtml?: boolean;
hasCss?: boolean;
hasCode?: boolean;
hiddenHtml?

: { configurable: true }
| { configurable: false, value?: string };

typeDeclarations?: string | URLString[];
}

Figure 3.13: The configuration interface for HtmlTestActivity

8Keep in mind that while each instance of HtmlTestActivity is a type of activity, the ActivityDescription
API itself has no knowledge of HtmlTestActivity, and HtmlTestActivity is simply a factory that creates activities
implementing ActivityDescription.
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3.2.6.1 p5.js

There was a request during the creation of Necode for a p5.js [24] activity. While very similar to
the standard HTML/Code/CSS activity, this would be streamlined for p5.js, and could include
p5.js-specific features. For example, because p5.js is such a large library, it would be valuable to
provide type declarations9 to Monaco so that auto-completion and tooltips would be available
to students.

This led to the creation of the typeDeclarations customization field in
HtmlTestActivityOptions (Figure 3.13), which allows type declarations to be pro-
vided either in one big source string or as an array of URLs to fetch the type declarations from.
For the p5.js activity, we just pull the latest p5.js type declarations from the DefinitelyTyped
repository.10

const [activityPage, configPage] = createTestActivityPages({
hasCss: false,
hasHtml: false,
hasTests: false,
hiddenHtml: {

configurable: true
},
typeDeclarations: [

'global.d.ts',
'index.d.ts',
'src/color/creating_reading.d.ts',
'src/color/setting.d.ts',
// ...
'constants.d.ts',

].map(x => `https://raw.githubusercontent.com/.../types/p5/${x}`)
});

Figure 3.14: A trimmed excerpt from src/activities/p5js/index.ts

Because user-written code runs globally, p5.js works out of the box when the library is
imported with a <script> tag in the hidden HTML,11 and so students can use p5.js the exact
same way they might on their local machine. Just like with the HTML/Code/CSS activity, in

9Specifically TypeScript (.d.ts) type declarations.
10https://github.com/DefinitelyTyped/DefinitelyTyped
11Actually, while Necode makes it easy for the instructor-user, importing scripts with a <script> tag is

surprisingly hard. Trying to create a script tag by assigning to innerHTML causes the scripts to not run because
of browser-enforced injection attack mitigation (removing the element from the document and putting it back
also does not alleviate this issue). To get around this, after assigning innerHTML inside our iframe, we create new
script elements with the exact same content and attributes for every non-running script element we just inserted
with innerHTML, and then replace the non-running elements with those fresh elements using safe DOM APIs.
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the p5.js activity students can modify some starter template provided to them in class, and
then submit it to the teacher to show the class.

Figure 3.15: A sample p5.js activity

3.2.6.2 GLSL

To use Necode in an upper-level graphics class, we needed the ability for students to write GLSL
shaders and view their output. While this could be done with the standard DOM Programming
activity, we felt it would be far more intuitive if we instead had a single GLSL pane which
students could write their shader in, without needing to worry about the surrounding WebGL
infrastructure written in HTML and JavaScript.

The problem is that GLSL does not exactly support being run in the global JavaScript
context, which means we could not approach GLSL integration in the same way we had
approached something like Python 3 integration. Instead, we made the GLSL language provide
an object to the global JavaScript scope representing the GLSL input. Additionally, instead of
targeting the supports:global and supports:isolated features, we used a new “is” feature
type, is:glsl. This allows activities to target specific languages by their name (every language
provides the is:language_name feature by default). In this way, the GLSL language can be
provided specially for the GLSL activity using the same FeatureDescription API as usual, but
without interfering with activities like DOM Programming and p5.js.

3.3 An Activity With Real-Time Communication

In this section, we will look at a different, more experimental type of activity called Canvas
Ring. Unlike the HtmlTestActivity family of activities, this activity is not about individual

23



CHAPTER 3. METHODOLOGY

Figure 3.16: A sample GLSL activity

work but is instead about students interacting with each other in real-time through a visual
medium.

3.3.1 In Action

The concept behind the Canvas Ring activity is that every user (students and instructors) who
joins the activity is placed into a “ring” data structure.12 Each user can then draw on a local
canvas using the normal CanvasRenderingContext2D API in JavaScript. Every “frame” (10
times per second), the user’s local draw method will be invoked, and then their canvas will be
sent to the user following them in the ring. At the same time, the user will receive the canvas of
the user preceding them in the ring, which they can use to draw their next frame. In this way,
there is a circular feedback loop between all of the users, each making their own contribution
to the canvas and then passing it onto the next user, in a large circle.

Though we have not yet had the opportunity to use this activity with a class, the aim is
to foster collaboration and creativity between students, while also giving an opportunity to
explore parts of the CanvasRenderingContext2D API that students may not frequently interact
with, such as blending modes and the alpha channel. Since canvases are sent as video data over
WebRTC, the activity can also demonstrate the effects of lossy compression over large numbers
of compression cycles.

12In computer science nomenclature, a circular doubly-linked list. We like the term ring here for the image it
evokes of a number of people linked together in a circle, so we will continue to use it. “Ring” as it is used in this
paper has nothing to do with the circular buffer data structure, which is sometimes also called a ring buffer.
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Figure 3.17: An instructor and two students doing the canvas ring activity
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3.3.2 Guardrails

Unlike in the HtmlTestActivity family of activities, Canvas Ring is much more about live
interaction, and so code is executed as it’s written, rather than after receiving some kind of
gesture. Additionally, code is not sandboxed in an iframe due to technical complications from
interacting with the canvas and WebRTC from inside an isolated environment. For this reason,
a number of guardrails are put in place to protect the user from harming themselves.

Firstly, any syntax error or other fatal issue will halt execution of the code completely. The
details of this error are given to the user in an alert box at the bottom of the code editor.
However, syntax errors are actually one of the less insidious kinds of bugs, since they just
cause everything to stop. More dangerous are bugs involving assignment, in which the user
might reassign an important property on the canvas rendering context object. If they do so
by accident, recovering that function is hard. For that reason, all built-in functions the on
rendering context object have had assignment disabled, and throw an error if the user attempts
to reassign them. For example, if a user attempts to reassign the fillText method, the code
will fail to run and they will see an error message:

Error: For your own safety, reassigning the methods of ctx is forbidden. If you really want
to reassign ctx.fillText, look into Object.defineProperty.

During development, we found that sometimes we would accidentally assign ctx.stroke
and ctx.fill (which are methods) instead of the intended properties, ctx.strokeStyle and
ctx.fillStyle. Because of that, if a user attempts to reassign one of these, we present a
special message:

Error: For your own safety, reassigning the methods of ctx is forbidden. If you really want
to reassign ctx.fill, look into Object.defineProperty.

Did you mean ctx.fillStyle?

Lastly, directly messing with the canvas element itself could interfere with the activity’s
functionality if the user does not know what they are doing. If the user attempts to access the
canvas element via ctx.canvas, we once again stop them, but let them know how they can
access the element if they really want to:

Error: For your own safety, ctx.canvas is forbidden. If you really want to access the
HTMLCanvasElement object, it has id "canvas-activity–canvas".

3.3.3 RTC Policies

Previously in Section 3.2.5 we showed a trimmed version of the ActivityDescription interface
(Figure 3.12). The actual ActivityDescription interface is far larger—after all, just knowing
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the name and required feature set of an activity is nowhere near enough information to make
the activity actually run. A more comprehensive illustration of the interface is provided in
Figure 3.18.

interface ActivityDescription {
id: string;
displayName: string;
requiredFeatures: FeatureDescription[];
defaultConfig: any;
rtcPolicy?: string;
configWidget?: ComponentType<ActivityConfigWidgetProps>;
configPage?: ComponentType<ActivityConfigPageProps>;
activityPage: ComponentType<ActivityPageProps>;

}

Figure 3.18: A simplified version of the ActivityDescription interface

There are a few things to note here. First is the activityPage and configPage proper-
ties, which are used to provide the elements to React to handle displaying the activity page
and configuration page. Note as well that the configPage property is optional. While the
HtmlTestActivity activities have configuration pages, Canvas Ring does not. There is also a
configWidget property, which relates to how the activity is displayed in the classroom manage-
ment view (Section 3.4). And there is a defaultConfig property, which allows configuration of
what an activity’s configuration should look like when it is first created.

But most relevant to this section is the rtcPolicy property. If we take a look at the
Canvas Ring activity’s definition (Figure 3.19), we can see that its RTC policy is ’ring’, which
makes sense given how the activity behaves. This policy name is associated with an RtcPolicy
(Figure 3.20) implementation of the same name on a server is responsible for WebRTC signaling,
as well as for notifying users about activities starting and sending and receiving submissions.
By specifying the desired RTC policy in the ActivityDescription, it instructs the server how to
coordinate WebRTC connections between users.

The purpose of this abstraction is similar to the purpose of the FeatureDescription abstrac-
tion: to make activities more declarative and flexible. If we wanted another activity like Canvas
Ring, but where instead the instructor’s canvas was sent to all of the students, we could just
implement a new RTC policy, called “command” for example, and then we would just have to
change the RTC policy in the activity’s ActivityDescription to be “command.”

3.3.4 Entry Point

Something that was ignored in the previous section, but is important not to gloss over, is the
presence of the supportsEntryPoint—or rather supports:entryPoint—feature in Canvas
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const canvasActivityDescription = activityDescription({
id: 'core/canvas-ring',
displayName: 'Canvas Ring',
requiredFeatures: [

supportsEntryPoint
],
activityPage: CanvasActivity,
rtcPolicy: 'ring',
defaultConfig: undefined

});

Figure 3.19: A simplified version of the Canvas Ring ActivityDescription

interface RtcPolicy {
policyId: string;
new(

users: Iterable<string>,
settings: RtcPolicySettings

): RtcCoordinator;
}

interface RtcCoordinator {
onUserJoin(user: string): void;
onUserLeave(user: string): void;

}

Figure 3.20: The RtcPolicy and RtcCoordinator interfaces

Ring’s ActivityDescription required features list (Figure 3.19). This is an alternative form
of execution from supports:global in which an activity can specify an entry point (i.e. a
function) that it wants to invoke, and the language implementation must create a variable
called entry which that function is assigned to. In this case, the entry point is called draw,
meaning the language must supply the activity with a function in the user’s code called draw.
This is what allows the activity to control the execution of the user’s code, rather than the
user’s code controlling execution like was the case throughout Section 3.2.

3.3.5 Pending Issues

A major issue currently blocking the use of this activity in a classroom is reliability. When
attempting to transfer data over WebRTC across networks, or between Chromium-based
browsers and Firefox, we encountered issues where WebRTC would refuse to connect, or connect
but refuse to transmit data. A hypothesis for what could be causing this is the absence of a
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TURN server, but we have not yet had the opportunity to test this. We also faced issues with
Chromium blocking autoplay of the video element used to pull in RTC data. While we have
fixed it for Chromium, that could be contributing to our issues with Firefox, though the precise
nature of the problem and potential remedies are still unclear.

3.3.5.1 Alternative Ways to Transmit Video Data

An alternative method for sending video data was considered during the development of this
activity, in which instead of sending video from user to user directly, we could instead send each
user’s code to everyone else, and let each user compute the entire ring on their local machine.
This would greatly reduce the necessary bandwidth for users to communicate since code is
far more compact than video data, and it could also eliminate a number of technical issues
encountered with trying to send video data via WebRTC. However, this was ultimately decided
against. As mentioned earlier, we do not sandbox code in this activity, removing the strongest
protections in Section 3.2.2, and even if we did perform sandboxing, unintentional denial of
service would be an even bigger issue than it was previously—one student accidentally running
some exponentially recursive code could take down the entire class’ browsers.

3.4 Classrooms

So far we have been exclusively looking at activities, but tying all of the activities together
(that is, the specific configured instances) is classrooms. The flow of setting up a classroom is
fairly straightforward: the instructor creates a classroom at a special admin page, they get a
join code for their classroom, they send the join code to their students, their students use the
join code to join the classroom.

When an instructor goes to manage their classroom, they are presented with a calendar
which they can use to select a particular day that they want to make a lesson for. After selecting
a day, they can name that day’s lesson, add activities, and even add short notes, either in code
or normal text. All together, a configured lesson might look like Figure 3.21.

3.4.1 Widgets

Each of the components in the lesson plan is called a “widget,” and widgets are directly tied to
activities via the ActivityDescription API (Figure 3.18). In fact, a widget cannot exist without
an associated activity. Even the text widgets have an activity, that activity is just a no-op
(Figure 3.22–3.23).

The theory behind custom widgets is that they should be used either when they are being
used by the instructor to convey some information to themselves (such as with the text input
widget), or when there are only one or two configuration options for an activity and having a
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Figure 3.21: A sample lesson in the manage classroom page

const textInputActivityDescription = activityDescription({
id: 'core/noop/text-field',
displayName:

'If this text is showing, you have encountered a bug :)',
requiredFeatures: [],
defaultConfig: {

language: null,
value: 'Write lesson notes here...'

},
activityPage: NoopActivity,
configWidget: TextInputWidget

});

Figure 3.22: A simplified version of the ActivityDescription for text widgets

import NotFoundPage from "../../../pages/404";

export default function NoopActivity() {
return <NotFoundPage />;

}

Figure 3.23: The entire NoopActivity implementation
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full configuration page would be unnecessary. Otherwise, one should just use the default widget,
which automatically populates with the necessary buttons to start or configure an activity.

3.4.2 Running Activities

Running an activity is as simple as pressing the “Start Activity” button, which will send all
students to the activity automatically. Sending special links for different activities to students
is unnecessary—students just need to log in and wait for it to start. Similarly, when an activity
ends by the instructor pressing the “End Activity” button, it will also automatically close for
all of the students.

The instructor is not required to be present in an activity for it to be running. As long as the
instructor has not ended an activity (and the server is still running), the activity will stay living,
which means that if, for example, the instructor loses internet access or has their computer
crash, the activity will not be interrupted. When the instructor returns to the classroom, there
will be a large banner letting them know that an activity is live and that they can return to it
or end it (Figure 3.24).

Figure 3.24: The manage classroom page with the live activity banner visible
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Results

To evaluate Necode in the classroom, we ran a series of activities relating to writing GLSL in a
class with thirteen students and then asked them to fill out a survey about their experience
(Appendix D: Necode Survey). These students had prior experience with GLSL from earlier in
the term, though it had been a few weeks since they had done the kinds of exercises presented
to them. Each of the activities was configured with a target output which represented what
the student’s result was intended to look like, along with the actual output of their shader
(Figure 4.1).

Figure 4.1: One of the activities used in our study
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4.1 Instructor Feedback

The execution of these activities in the classroom was flawless, though there were some quirks
with the instructor configuration that made creating the activities more challenging. These
were primarily bugs and not-yet-implemented features whose individual impact was relatively
minor but whose combined impact was more significant.

There were also some requests for new previously-unplanned features. One of these was
duplication of activities. All five activities we ran had very similar infrastructure, so in order to
make a new activity, the contents of each code pane had to be copy-and-pasted from one activity
to the next. While doing that is not particularly hard, it provides a poor user experience that
could be easily remedied with a new button.

The other major request we had was the ability for an instructor to create “dummy” accounts
which they could use to test out their activity from a student perspective. Even if we tell
instructors how Necode will work with students, allowing them to test the entire student flow
for themselves could provide the confidence needed to actually use Necode in their classroom.

4.2 Student Feedback

Ten of the thirteen students who participated in some form filled out our survey. This is not a
large enough sample to make a statistical claim with any kind of confidence, but it is enough
to provide meaningful feedback on using Necode in a real classroom.

4.2.1 Necode’s Interface

While enjoyment is not the primary metric of interest when evaluating this tool, it would be
a bad sign if using Necode made classes less enjoyable, so we wanted to assess the students’
feelings on the matter. Nine of the ten students said Necode made the class more enjoyable,
and the remaining one said it did not impact their enjoyment at all (Figure 4.2).

In terms of Necode’s usability, students were overall quite pleased once again (Figure 4.3),
though a couple of students reported some initial confusion over needing to explicitly apply
changes. One student reported that they would have liked a small reference of GLSL functions.

We also wanted to see how much of an issue it would be for students to jump between the
programming environment they were used to and Necode. All ten students reported that it was
easy to transition to Necode from their normal programming environment, with six of them
saying it was very easy (Figure 4.4).

4.2.2 Individual Aspects

In addition to asking about their experience with Necode as a whole, we also asked students a
series of questions about specific features of Necode, and how much they improved the student’s
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Figure 4.2: Chart of responses on how enjoyable it was to use Necode
Based on the Likert scale where 1 represents “decreased enjoyment” and 5 represents

“increased enjoyment”
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Figure 4.3: Chart of responses on how easy it was to use Necode
Based on the Likert scale where 1 represents “very difficult” and 5 represents “very easy”
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Figure 4.4: Chart of responses on how easy it was to transition to Necode
Based on the Likert scale where 1 represents “very difficult” and 5 represents “very easy”

understanding of the content being presented.
Having a code editor and output pane on the same screen was found to be extraordinarily

helpful, with all ten students saying it helped them understand the content, and nine of them
saying it helped a lot (Figure 4.5). A couple of students specifically mentioned that they found
the ability to rapidly make changes useful.

Yes, a lot Yes, a little No
0

2

4

6

8

Figure 4.5: Chart of responses on whether the code editor/output pane combination improved
understanding

The automated testing had much more of a mixed response, with only three of the students
saying it helped a lot and an equal number saying they did not help at all (4.6). Referencing
the goal image in the output pane, one student said, “[the] tests didn’t really impact my
understanding since it was more of a ‘I can see that it’s right, this is a formality.’ ” Another
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mentioned that the tests were unable to catch them using an if statement rather than a GLSL
function, which while not behaviorally wrong, has significant performance impacts in GPU
code.

Yes, a lot Yes, a little No
0

1

2

3

4

Figure 4.6: Chart of responses on whether the automated tests improved understanding

When we asked students whether that discussion improved their understanding of the
content, all ten said yes, and seven of them said it helped a lot (Figure 4.7). The free-response
comments to this question told a similar story, with one student saying “[it] was interesting
seeing the other ways students did things,” and another saying “I got to see how others did
things so I could improve my own solutions.”

Yes, a lot Yes, a little No
0

2

4

6

Figure 4.7: Chart of responses on whether the discussion improved understanding
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4.2.3 Use In Other Classes

The last piece of quantitative data we wanted was information on whether students wanted to
see Necode used in other classes. To determine this, we asked students if they wanted to see
Necode used in most cases, only when visual output was emphasized, only when automated
tests are emphasized, or only in rare cases if at all.

When combined with the students who said they wanted Necode used in most cases, eight
of the ten students said they wanted Necode to be used in classes where visual output was
emphasized and seven said the same for when automated tests were emphasized (Figure 4.8–
4.9).1 One student said that they thought Necode was best for “classes/examples that can be
tested automatically, but it can be very helpful for students to see a visual representation of a
program’s output (e.g. the result of a pathfinding algorithm on a graph).” Another mentioned
that while they liked the idea of using Necode in other classes, they did “not want to be graded
on the exercises as it is not similar to my normal coding practices.”

Most cases Visual emphasis Testing emphasis Rarely/never Other
0

1

2

3

4

Figure 4.8: Chart of when students wanted to see Necode used in other classes

4.2.4 General Feedback

We also received some general feedback on Necode as a whole from some students. One student
mentioned an issue with the lack of feedback from the interface when making a submission.
Another student suggested a feature where students can refer back to their code and submissions
from previous activities (presumably from that overall lesson).

1One student said they wanted to see Necode used when there was a visual emphasis or a testing emphasis,
but not when there was neither. We do not include them as wanting Necode to be used in most cases, but we do
count them towards the cumulative support for using Necode in classes that have a visual emphasis and testing
emphasis.
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Figure 4.9: Aggregate chart of when students wanted to see Necode used in other classes
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Discussion and Conclusion

5.1 Discussion of Results

5.1.1 The Interface

Overall, Necode’s interface was well-received from the student perspective, and while there
were some bugs with the instructor side, we believe we have a fairly good handle on most of
them, and some have already been addressed. Some of the other feedback will be addressed
further in Section 5.2.

One area that was interesting to see some critical feedback of was students needing to
manually apply changes. We consider manually applying changes to be an important feature
for reasons mentioned in Section 3.2.1, though implementing a configurable toggle to enable
auto-apply changes may be an option. However, because this is mostly a concern when students
are first exposed to Necode, a configuration option is not likely to fix the underlying issue.
Clearer explanation of the user interface, either from the instructor or from Necode itself (or
both), is more likely to be the most effective solution. We can also investigate ways of changing
the interface in order to create a more intuitive flow.

The extremely positive feedback about having a code editor and output pane integrated
into one interface is encouraging, though it should not be particularly surprising given how
many other educational software tools offer a similar feature. However, it is a good reminder
that having an interface conducive to rapid prototyping is immensely valuable, especially in
educational contexts. It is similarly encouraging to see that students found it easy to transition
to Necode, as it bodes well for using Necode alongside other software like we stated was a goal
in Section 3.1.
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5.1.2 Automated Tests

The use of automated tests was viewed significantly more negatively than any other part of
Necode, though we believe that this may be a side effect of the particular activities that were
used in this study. Because the activities visually showed the correct solutions, a student would
only need to compare their image to the one they saw on the screen to know if they were right.
Some of the free-response feedback also echoed this view. Seven of the ten students said they
wanted to see Necode used in other classes that have an emphasis on testing, which suggests
that the students actually liked the idea of automated testing, but only when necessary. While
we have not yet tested this kind of activity with students, the comment by one of the students
saying that the output pane could be useful for seeing a visual representation of an algorithm
directly supports a use case we outlined in Section 3.2.4 and Figure 3.8.

While we understand the concern a student raised regarding accepting semantically valid but
non-ideal code, disallowing it would both be difficult and could raise some pedagogical concerns.
There is no way for Necode to know what the “right” way to write code is supposed to be in all
cases, and even if we provided parse tree or AST-traversal tools to the instructor, setting up
tests would be both labor-intensive and high-skill, two things we were trying to avoid when
creating the testing DSL. Additionally, allowing sub-optimal code to pass provides opportunities
for discussion and therefore learning when the instructor goes over student solutions with the
class. Even if we could forbid such code from passing, doing so might take away that benefit.

5.1.3 Class Discussion

As mentioned in Chapter 1, one of the key motivating factors behind Necode, and especially
behind putting so much focus on the HtmlTestActivity category of activities, was providing the
ability for students to work on a problem individually1 and then to be able to discuss different
solutions as a whole class. The response to that part of the lesson was very positive, which
supports our hypothesis that this kind of exercise is valuable. While we did not investigate
whether the class discussion improves any quantitative performance metric, based on the results
we did receive we would still encourage any instructor who uses Necode in their class to use the
submission feature for full-class discussion of student solutions.

5.2 Future Work

Beyond bug fixes and interface tweaks, there are a number of areas that we would like to expand
on Necode in the future. Firstly, new tools to help instructors use Necode are crucial. Dummy
accounts as was mentioned in the feedback would be useful, but we also want to be able to
supply template configurations of various activities, and perhaps allow instructors to make

1Or in small groups, though the RTC policy and front-end UI for that has not yet been implemented.
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their own and share them with other instructors. The ability to move activities between lessons
and duplicate activities would also be valuable, and we would also like to add the ability to
export and import Necode data so that instructors can back up their course data and process
it externally.

We also want to create more activities, and at the same time change how activities are
loaded. Currently, the code for every activity type that Necode supports is loaded whenever
any activity is loaded, which is manageable for now since there is a large amount of code reuse
and a small number of activity types, but is not scalable. We want to restructure how we load
activities such that they can be loaded on demand, and potentially so that instructors can
design and implement their own activities, and then import them into Necode for use in their
class.

Along with more activities, we also want to make more RTC policies, and use our RTC
framework to implement a collaborative editor system like many other educational tools have.
We believe that there is significant potential in real-time networked classroom activities that
currently remains untapped, and we would like to explore it further.

Lastly, while JavaScript and Python (the two general-purpose languages we currently
support) are very popular languages, they are much less popular in computer science classrooms,
at least here at WPI where we expect Necode to be most used initially. Getting support for
Racket, especially the How To Design Programs variants of Racket that we use in our intro CS
class, would be immensely helpful, as would getting Java support, the language used in our
Algorithms class, and C, the language used in our systems classes. Getting support for these
languages would require more investigation into running compiled languages in Necode, as we
discussed in Section 3.2.5.1.

5.3 Conclusion

Necode is a valuable tool for teaching computer science using in-class activities that allows
students to write code in their browser and see its output live in a visual format. Instructors
can write automated tests for students to run their code against, and look at multiple student
solutions for full-class discussion. We encourage instructors who are interested, particularly
computer science faculty at WPI, to contact us about using it in their classroom. Necode has
been set up for WPI and is available at https://code.cs.wpi.edu/. Instructors at other schools
and universities may also contact us about how to get Necode set up for their school.

For those who are interested in looking at Necode’s source code, filing bugs/issues, or
contributing to Necode, the full source is available at https://github.com/TheUnlocked/Necode,
along with documentation on setting up an instance of Necode.
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Appendix A: Hot Reload

Hot reloading code generally requires a decoupling of state from behavior, so that the behavior
can be replaced independently of state. The problem with coupled state and behavior is that
when behavior changes, state must also be reset, since they cannot be changed independently
of each other. For example, consider this code:

// <button id="counter">0</button>
const counter = document.getElementById('counter');

counter.addEventListener('click', e => {
counter.innerText = +counter.innerText + 1;

});

As we clicked the button, we would see its text change in the sequence:

1,2,3,4

Now suppose we want to change the + 1 into + 2. We could try to remove the old JavaScript
and add our new updated script back in. However, now if we click the button, we would see the
sequence continue after 4:

7,10,13,16

It’s increasing by 3 instead of by 2. This is because the old event listener is still attached to the
button even after removing the script, so on every click, it adds 1, and then adds 2 after that,
for a total of 3. Unfortunately, that is almost certainly not the intended effect.

While we could do some magic behind the scenes to automatically remove event listeners
when code is swapped out (assuming that was even the desired behavior in all cases), there
would still be other, far trickier issues to solve. For example, if we make a slight change to the
previous code:
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const counter = document.createElement('button');
counter.innerText = '0';

counter.addEventListener('click', e => {
counter.innerText = +counter.innerText + 1;

});

document.body.append(counter);

We now have a real problem if we try to re-run the code. If we remove the old script and add
back the new one, there end up being two buttons. We could try to remove all inserted elements
when a script is removed, but that is only a solution to this specific case, not in general. Inserted
elements might be an important part of program state.

Hot reload works in Java by replacing method bodies, since method bodies themselves are
not involved with storing any state, and therefore can safely be replaced (stateful members like
fields still cannot be replaced). This is possible due to how Java is compiled as a set of classes
containing methods known at compile time, and it relies on a method being uniquely identified
by a combination of its name and signature so that methods in the old and new version of a
class can be linked up for swapping out the body [25]. It would be much harder to pull off in
JavaScript where functions are dynamically created at run-time, since there is no way for the
language to know if two functions are supposed to be the “same” function.

That is not to say there is no way to hot reload code in JavaScript, it just requires
significantly more care. If a particular module is pure (that is, loading the module itself doesn’t
have any side effects), the entire module can be safely swapped out in a practice called “Hot
Module Replacement” or HMR. In web frameworks, componentizing content and making state
declarative can also go a long way in helping. For example, functional components in React
can swap out behavior at will by letting the framework handle state itself, and just having
components request the state they need with the useState hook (among others). This way, a
component only needs to reset its state if the order or number of hooks changes, and because
React is componentized, only that component’s subtree will need to be reset, anything above it
in the component tree is safe. Additionally, in situations where external state not governed by
React must be used, React provides a mechanism for clean-up with the useEffect hook [26].

However, the DOM Programming activity just uses a single file script (and that script
will usually have side effects), rendering HMR useless, and it does not enforce any kind of
framework, so the kinds of guarantees that React (and other web frameworks) take advantage
of to allow hot reload also do not apply here.
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Note: Interactive documentation is available at https://necode.vercel.app/docs/tests.

Necode’s testing DSL is a minor extension of TypeScript that assists in writing simple tests
by providing two new features: checks and waits.

Checks

A check is an assertion. The simplest kind of check, literally the function check, checks if a
condition is true, and if not, reports a test failure with a provided message. That message is
then shown to the user via the test dialog (like in Figure 3.7).

Checks have some special properties however, enabled by a babel transformer. The first is
auto-closures:2 the condition in a check is automatically wrapped in a closure so that it can be
more carefully invoked when needed, and guarded by a try-catch statement in case of runtime
errors. For example, if a check attempts to invoke a student-written function, but the student
has not written that function, the test which invokes the missing function will fail gracefully
with the appropriate error message rather than spitting out a ReferenceError that may be
meaningless to the student.

// If square doesn't exist, this test will fail.
check(square(0) === 0, 'Squaring 0 should be 0!');

In the example above, the error message is really just restating the condition. To remove
this redundancy, a second feature is made available in checks: the SHOW_TEST keyword. By using
SHOW_TEST in place of a hand-written error message, students will see the actual code written in
the condition, which both saves the instructor time and gives students something more concrete
to debug their code with. Using SHOW_TEST over something hand-written is not always better,
especially when a check’s condition might involve additional code that the student doesn’t have
access to, but it can greatly improve the instructor and student experience when conditions are
simple.

2Swift has a similar feature where a function parameter can be annotated with @autoclosure in order
to automatically wrap arguments in a closure [27]. While we were not thinking of Swift specifically while
implementing checks, there may have been some subconscious inspiration.
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check(square(0) === 0, SHOW_TEST);

While normal checks fail when they encounter an error, checkError is also made available
in case the instructor wants to verify that a particular piece of code does throw an error. It
has the same auto-closure behavior as check, but rather than failing if the condition is not
truthy, it fails if the condition does not throw an error. A callback can also be given as a third
argument if the instructor wants to examine the error before deciding whether the test should
pass.

const bankAccount = new BankAccount(100);
checkError(

bankAccount.withdraw(500),
'BankAccount.withdraw should throw if too much money is removed',
err => err.name === 'NotEnoughFunds'

);

Waits

The wait function does what it sounds like it would do—wait. In particular, it performs a
non-blocking wait for a specified amount of time, which allows the instructor to test for changes
in a student’s program across time.3 In order to make waits non-blocking, the babel transformer
is required once again in order to automatically await waits when they appear, since wait
actually uses setTimeout wrapped in a promise behind the scenes:

function wait(ms) {
// 500 ms max to improve responsiveness.
return new Promise(resolve => setTimeout(resolve, Math.min(ms, 500)));

}

3While the instructor can enter a number of milliseconds for a wait statement to wait for, there is no
guarantee that Necode will wait exactly that amount of time, so checking for specific time-dependent values may
be less effective than checking for broader trends or checking if a value lies within an interval.
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waitFor is provided as a more advanced variant of wait that lets the instructor wait for
when a particular condition is met. In case the condition is never met, it also comes with a
timeout argument, and will return false if the timeout expires without the condition being met
(returning true if the condition is met within the timeout). This can pair quite nicely with
checks:

check(
waitFor(() => document.getElementById('points'), 300),
'An element with id "points" didn't appear in time.'

);

Unlike with checks, waitFor does not use auto-closures. This is because the condition is
frequently polled, and so using auto-closures could feel too “magical” to instructors. By having
an explicit closure, we indicate to instructors that waitFor can evaluate the condition as much
as it wants.
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Appendix C: Investigative Study

In 2020, Trevor Paley (the author of this paper), along with Lindberg Simpson, Stephen Lucas,
and Yongcheng Liu (who are not authors of this paper), created a piece of software called
Adversary for a class project. In the early stages of developing Necode, we adapted Adversary
into a rudimentary version of what Necode would eventually become, and it was used one time
with students in a web development class to solicit feedback to help advise the direction of
Necode. There were 11 respondents out of an unknown but much larger number of students.
The following is the survey used.

Survey

Several of the questions will refer to “this activity” and “the software.” To clarify what those
mean,

“This activity” refers to the code-writing and discussion part of the study, in which you
attempted to solve programming problems and then discussed your solutions as a class. These
questions are aimed at assessing the value of and soliciting feedback on the activity itself,
independent of any quirks in the software.

“The software” refers to the actual software tool you used to perform the activity. These
questions are aimed at assessing how effective the software was at facilitating the activity,
including any technical or user experience issues you may have faced.

1. Did you do this activity in person or remotely?

• In Person
• Remotely

2. How would you rate the difficulty of the problems you completed, considering
what you have learned so far?
Likert scale from 1 (too easy) to 5 (too hard)

3. Comments
Free response

4. Did the code-writing part of this activity improve your understanding of the
content?
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• Yes, a lot
• Yes, a little
• No

5. Did the discussion of solutions improve your understanding of the content?

• Yes, a lot
• Yes, a little
• No

6. How could this activity be changed to improve your learning experience?
Free response

7. Imagine this activity could be used with any programming language. Would
you find it helpful for Computer Science classes other than Webware to use
this kind of activity in their instruction?

• Yes
• No

8. If you answered yes, which classes do you think this kind of activity would be
well suited for?
Free response

9. If you answered no, or if you answered yes but there are some classes that
you think this kind of activity would not be helpful for, why not?
Free response

10. What other classroom activities do you think could be interesting to do with
a code editor like the one you used in this activity?
Free response

11. How easy was the software to use?
Likert scale from 1 (very easy to use) to 5 (very hard to use)

12. What would you want changed to improve the usability of the software?
Free response

13. Do you have any other comments about the activity, the software you used,
or your experience?
Free response
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The following is the survey that was given to students to help evaluate Necode.

1. How much did Necode impact your enjoyment of this class?
Likert scale from 1 (decreased enjoyment) to 5 (increased enjoyment)

2. How easy/difficult was Necode to use?
Likert scale from 1 (very difficult) to 5 (very easy)

3. Comments
Free response

4. Did having access to a code editor and output pane in Necode improve your
understanding of the content?

• Yes, a lot
• Yes, a little
• No

5. Comments
Free response

6. Did Necode’s automated tests improve your understanding of the content?

• Yes, a lot
• Yes, a little
• No

7. Comments
Free response

8. Did discussion of student solutions improve your understanding of the content?

• Yes, a lot
• Yes, a little
• No

9. Comments
Free response
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10. How easy/difficult was it to transition from your normal programming envi-
ronment to Necode?
Likert scale from 1 (very difficult) to 5 (very easy)

11. Comments
Free response

12. Would you like to see Necode used in other Computer Science classes that
involve programming, potentially using other programming languages?

• Yes, in most cases
• Yes, but only in classes where visual output is emphasized (e.g. Webware, Computer

Graphics)
• Yes, but only in classes where automated tests are emphasized (e.g. Introduction to

Program Design, Algorithms)
• No, or only rarely
• Other (free response)

13. Comments
Free response

14. Do you have any other comments about using Necode in this class?
Free response
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